Note

Parameters of ¹⁷O-n.m.r. signals of some isotopeenriched monosaccharide derivatives*

PHILIP A. J. GORIN AND MYTOSK MAZUREK

Prairie Regional Laboratory, National Research Council of Canada, Saskatoon. Saskatchewan S7N 0W9 (Canada)

(Received February 10th, 1978; accepted for publication, March 4th, 1978)

It is of interest to assess ¹⁷O-n.m.r. spectroscopy as an analytical tool in carbohydrate chemistry, but no reports exist on chemical-shift ranges and line widths, the important factors in determining the resolution of a n.m.r. spectrum. Values have been found for many mono- and di-oxygenated organic compounds having the natural-¹⁷O abundance of 0.037% by using continuous-wave¹⁻⁴ and Fourier-transform techniques^{5.6}. However, the line widths of 45 to 2000 Hz (6 to 260 p.p.m.) were large, in resolution terms, compared with the chemical-shift range of ~600 p.p.m. for oxygen atoms linked to carbon atoms. The line width is due to quadrupole relaxation and the tumbling time of the molecule⁷, and decreases with increased temperature and increased speed of tumbling⁸.

The line widths of signals of monosaccharides specifically labelled with ¹⁷O at levels up to 10 atom-percent, and dissolved in 2,6-lutidine, were so large at room temperature that they were indistinguishable from baseline roll: this appears consistent with their molecular size, which is larger than those of compounds previously examined. Signals were better defined at 100°, when their line widths were 230–600 Hz (see Table I). Although ¹⁷O-H decoupling was not possible as the methyl protons of the solvent were used for locking, none of the hydroxy compounds gave such complex signals as the 1:2:1 triplet observed for ¹⁷O in acetone⁹.

Even at 100° , the line widths of 240-520 Hz were large in comparison with the chemical-shift range of signals of ¹⁷O nuclei of primary alcohols (2, 11: Table 1), secondary alcohols of linear molecules (3, 4), five-membered rings (6, 7), and equatorial or axial groups in six-membered rings. Significant deshielding occurs, however, with O-1 of 2,3,4,6-tetra-O-methyl- α -D-mannopyranose (5), as with acetals ¹. In only one case was the shift of the signal of a hydroxyl ¹⁷O nucleus affected by the presence of a vicinal substituent. The O-2 atom of D-mannose- $2^{-17}O$ diethyl dithioacetal (3) was deshielded by the two thioacetal groups, contrasting with O-2 of methyl α -D-mannopyranoside- $2^{-17}O$ (8), which is unaffected by the vicinal hemiacetal grouping.

^{*} NRCC No. 16683.

CHEMICAL SHIFTS AND HALF-HEIGHT LINE-WIDHIS OF 17O RESONANCES AT VARIOUS TEMPERATURES

Number	Labelled compound	80°		100°	
		Chemical shift (p.p.m.)	Line width (Hz)a	Chemical shift (p.p.m.) ^b	Line width (Hz)
Hydroxyl derivatives	utives				
-	H:170	+	100	77	80
• 6	0-Gluciol-7-10	- * 1	520	4	280°
1 65	D-Mannose-2-17 O diethyl dithioacetal	+17	800	+17	520
, -1	1.2-O-Isopropylidene-x-p-glucofuranose-5-170	I	I	4-	260
· ĸ	2,3,4,6-Tetru-O-methyl-a-D-mannose-1-1704	1	I	+40	260
9	1,2:5,6-Di-O-isopropylidene-a-p-glucofuranose-3-170	1	I	+5	310
	1.2:5.6-Di-O-isopropylidene-a-p-allofuranose-3-170	+2	400	+4	270
· >	Methyl a-p-mannopyranoside-2-170	+2	640	+2	480
6	Methyl B-p-allopyranoside-3-170	I	1	∞ 1	400
10	Methyl a-p-glucopyranoside-3-170°	-	,	+3 to +6	I
11	Methyl α -L-glucopyranoside-6- 1 70°	l	1	9-	240
Ether derivatives	S				
12	Methyl a-p-glucopyranoside-5-170°	l	1	+48	200
13	Methyl 3-0-methyl-B-p-allopyranoside-3-170	1	ī	-17	009
14	Acetate of 13	l	I	-17	009
15	Hexa-O-methyl-D-glucitol-/-17O	-22	330	-25	230
Acetate derivatives	ites				
16	Hexaacetate of 2	+154	720	+149	450
17	Pentaacetate of 3	Į	800	+149	520
18	Triacetate of 4		í	+164	460
19	3-Acetate of 7	i	540	+162	340
	de tambés de la companya de la comp				

⁴I p.p.m. = 13.56 Hz at 2.3 T, ^bConvention of expressing chemical shift as described in the Experimental section, paragraph 2. *Line width of 180 Hz at 125°, ⁴Dissolved in anhydrous 1,4-dioxane. *Dissolved in 2,6-lutidine containing N.N-dimethylformamide.

NOTE 481

Replacement of hydroxyl groups by methoxyl groups resulted⁴ in a shielding of 21 p.p.m.* for the primary O-1 of D-glucitol-l- ^{17}O (2 and 15), and 9 p.p.m. for the axial O-3 of methyl β -D-allopyranoside- β - ^{17}O (9 and 13). Also in agreement with previous work⁴ is the strong deshielding of 120–168 p.p.m. occurring on O-acetylation.

Synthesis of some oxygenated derivatives is difficult, but it appears possible to predict the $^{17}\text{O-n.m.r.}$ spectra of certain simple monosacchatides. For example, glucose should give a single signal at ~ -6 to +6 p.p.m. corresponding to O-2, O-3, O-4, and O-6, and the deshielded O-1 and O-5 nuclei should give another composite signal, at $\sim +40$ to +48 p.p.m., by analogy with these nuclei in 2,3,4,6-tetra-O-methyl- α -D-mannose-I- ^{17}O (5) and methyl α -D-glucopyranoside-S- ^{17}O (12), respectively. Methyl α -D-glucopyranoside should give three ^{17}O signals, as, on methylation of the OH group, the O-1 nucleus would be more shielded, so that its signal would lie between the resonance of O-5 and those of O-2, -3, -4, and -6.

In terms of resolution of the signals of ¹⁷O-n.m.r. spectra of monosaccharides, the method suffers in comparison with those wherein proton, carbon-13, and deuterium are the nuclei observed. Furthermore, compounds containing 2 atompercent of ¹⁷O are needed, and many of these are difficult to synthesize by known methods.

EXPERIMENTAL

General. — Oxygen-17 n.m.r. spectra were recorded with a Varian XL-100-15 n.m.r. spectrometer equipped with a Gyrocode Observe Accessory to provide the 13.56-MHz observe frequency. All spectra were obtained by using the Fourier-transform mode with a Computer Alternating Pulse Sequence (CAPS) data-acquisition method, to lower baseline roll in the transformed spectrum.

The acquisition time was 0.02 s and the transients were $\sim 100,000$. Under these conditions, 250 acquisition points were used, and the spectral width was 10 kHz. In terms of sensitivity, at 33° a recognizable signal was obtainable by using 1 transient with $H_2^{17}O$ (0.1 mL; 10 atom-percent) in 2,6-lutidine (2 mL) contained in a 12-mm diameter tube fitted with a vortex plug. Chemical shifts are expressed in p.p.m. relative to the ^{17}O resonance of 1,4-dioxane in 2,6-lutidine, determined in separate experiments. Under these conditions, recognizable signals could be obtained at 80° upward by using a 200-mg sample of carbohydrate having 2 atom-percent of ^{17}O in one position.

Preparation of ¹⁷O-labelled compounds. — Samples of H₂¹⁷O containing 2 and 10 atom-percent of ¹⁷O were obtained from Stohler Isotope Chemicals. Oxygen-17 was introduced into carbohydrates by exchange of that in H₂¹⁷O with ¹⁶O in appropriate aldehydes, ketones, or reducing sugars. When the exchanged product was not desired, it was, in most cases, reduced with sodium borohydride as indicated, to

^{*}For the convention adopted for chemical shifts, see the Experimental section, paragraph 2.

482 NOTE

give alditols listed in Table I. The incorporation of ¹⁷O was measured by mass spectrometry in the chemical ionization mode.

D-Glucitol-1- 17 O (2) and its hexamethyl ether (15) and hexacetate (16). — A solution of D-glucose (300 mg) in H_2^{17} O (10 atom-percent; 0.5 mL) was heated for 18 h at 100°, and then sodium borohydride (50 mg) was carefully added, with cooling. Compound 2 was isolated in the usual way, and one-third of it was methylated by the method of Kuhn et al. 10 , giving 15; the rest was acetylated with Ac_2O -pyridine to afford compound 16.

D-Mannose-2-¹⁷O diethyl dithioacetal (3) and its pentaacetate (17). — A solution of D-arabino-hexosulose 1-(diethyl dithioacetal)¹¹ (400 mg) in 1,4-dioxane (0.8 mL) containing H₂¹⁷O (2 atom-percent; 0.4 mL) was kept for 2 h at 80°. Sodium borohydride (60 mg) was added, and, after reduction was complete, the solution was processed; examination by g.l.c. [4:1 (v/v); chloroform-ethanol; spray: 50% aqueous sulfuric acid] then showed two spots, one being present in only a very small proportion. Compound 3 (305 mg), m.p. and mixed m.p. 130–132°, was obtained by crystallization from aqueous ethanol. Its pentaacetate (17) was obtained by acetylation with acetic anhydride-pyridine.

2,3,4,6-Tetra-O-methyl- α -D-mannose-1- ^{17}O (5). — A solution of the unlabelled sugar (100 mg) in $H_2^{17}O$ (10 atom-percent; 0.2 mL) was kept overnight at 100°. Dry 1,4-dioxane (2 mL) was added, and the solution was evaporated. The residue was dissolved in dry 1,4-dioxane (2 mL), and the solution, which contained mainly the 1-labelled, α -D anomer, was used in spectral determinations.

1,2-O-Isopropylidene- α -D-glucofuranose-5- 17 O (4) and methyl α -D-glucopyranoside-5- 17 O (12). — 1,2-O-Isopropylidene- α -D-xylo-hexofuranurono-6,3-lactone-5-ulose 12 (300 mg) was equilibrated (at O-5) in 1,4-dioxane (0.6 mL) containing H_2 17 O (0.3 mL; 2 atom-percent) for 2 h at 80°. Sodium borohydride (74 mg) was then added, and the resulting 4 (223 g) was obtained crystalline from ethyl acetate. Its triacetate (18) was prepared by acetylation with Ac_2 O-pyridine, and, from 18, compound 12 was obtained by refluxing in 3% methanolic hydrogen chloride for 2 h. An improved isotope yield was obtained by addition of 0.3 g of carrier. For complete dissolution, 20% of N,N-dimethylformamide was added to the n.m.r. solvent, namely, 2,6-lutidine.

1,2:5,6-Di-O-isopropylidene- α -D-allofuranose-3- 17 O (7), its 3-acetate (19), and 1,2:5,6-di-O-isopropylidene- α -D-glucofuranose-3- 17 O (6). — A solution of 1,2:5,6-di-O-isopropylidene- α -D-ribo-hexofuranos-2-ulose 13 (1.0 g) in 1,4-dioxane (2 mL) containing H_2 17 O (1 mL: 10 atom-percent) was heated for 30 min at 80°, and cooled. Sodium borohydride (0.2 g) was added, and, following isolation, the mixed di-O-isopropylidene derivatives were fractionated on a column of silicic acid, using chloroform as the eluant. The first fraction was crystallized from ether-heptane, giving compound 7 (0.26 g). The 3-acetate (19) of 7 was obtained by acetylation with Ac_2O -pyridine. To the second fraction, which was a mixture, was added 0.8 g of 1,2:5,6-di-O-isopropylidene- α -D-glucofuranose and the product was recrystallized twice from ether-heptane to give 6.

NOTE 483

Methyl α -D-mannopyranoside-2- ^{17}O (8). — Compound 8 was obtained from D-mannose-2- ^{17}O diethyl dithioacetal by the method outlined by Pacsu 14 .

Methyl β -D-allopyranoside-3-¹⁷O (9), its 3-methyl ether (13), and methyl α -D-glucopyranoside-3-¹⁷O (10). — Compounds 9, 13, and 10 were prepared by the action of refluxing methanolic hydrogen chloride (3%) on 7, its 3-methyl ether (prepared from 7 by the action of MeI-Ag₂O), and 6. Acetylation of 13 with Ac₂O-pyridine gave the 2,4,6-triacetate (14).

Methyl α -L-glucopyranoside-6-¹⁷O (11). — Methyl α -D-glycero-L-gluco-heptopyranoside¹⁵ (300 mg) was oxidized with 1 molar equivalent of sodium metaperiodate in water (10 mL) at 4°. After 18 h, the solution was de-ionized with resins, and evaporated to a syrup; this was equilibrated in $H_2^{17}O$ (0.5 mL; 2 atom-percent) for 1 h at 100°. Sodium borohydride (60 mg) was added, and, after processing in the usual way, compound 11 was crystallized from ethanol.

REFERENCES

- 1 H. E. WEAVER, B. M. TOLBERT, AND R. C. LAFORCE, J. Chem. Phys., 23 (1955) 1956-1957.
- 2 S. S. DHARMATTI, K. J. S. RAO, AND R. VIJAYARAGHAVAN, Nuovo Cimento, 11 (1959) 656-669.
- 3 H. A. CHRIST, Helv. Phys. Acta, 33 (1960) 572-576.
- 4 H. A. CHRIST, P. DIEHL, H. R. SCHNEIDER, AND H. DAHN, Helv. Chim. Acta. 44 (1961) 865-880.
- 5 C. Delseth and J.-P. Kintzinger, Helv. Chim. Acta, 59 (1976) 466-475.
- 6 D. CANET, C. GOULON-GINET, AND J. P. MARCHAL, J. Org. Magn. Reson.. 22 (1976) 537-542.
- 7 H. A. CHRIST AND P. DIEHL, Helv. Phys. Acta. 36 (1963) 170-182.
- 8 S. W. RABIDEAU AND J. A. JACKSON, J. Chem. Phys. 41 (1964) 3405-3410.
- 9 J. REUBEN, A. TZALMONA, AND D. SAMUEL. Proc. Chem. Soc., (1962) 353.
- 10 R. Kuhn, H. Trischmann, and I. Löw, Angew. Chem., 67 (1955) 32.
- 11 S. BAYNE, Methods Carbohydr, Chem., 2 (1963) 421-423.
- 12 W. MACKIE AND A. S. PERLIN, Can. J. Chem., 43 (1965) 2921-2924.
- 13 K. ONODERA AND N. KASHIMURA. Methods Carbohydr. Chem., 6 (1972) 331-336.
- 14 E. PACSU, Methods Carbohydr. Chem., 2 (1963) 354-367.
- 15 H. S. ISBELL AND H. L. FRUSH, J. Rev. Natl. Bur. Stant., 24 (1940) 125-151.